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ABSTRACT
/ 2 2.9 |
The influence of the plasma sheath on the slot antenna properties is considered.
It is shown that opening a slot in a thin overdense plasma sheath re-establishes
in many cases the radiation of an elementary cylinder antenna. The changes in

the impedance of a cavity backed slot antenna with the onset of a plasma sheath

are formulated on the basis of an energy theorem. M ‘
iav
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I. INTRODUCTION

The difficulty in maintaining communications with the aerospace vehicle
during those phases of the flight when a plasma sheath forms on the antenna surfaces
is well known (Rotman and Meltz, 1960; Ellis, 1962), ! The necessity of keeping
radio contact with the vehicle at these times is equally clear (Huber and Nelson,
1962), It appears that a contribution to the solution of this problem will come from
a quantitative understanding of the role the plasma sheath plays in modifying the
absolute gain and the radiation pattern of the aerospace vehicle antennas. This re-
quires developing analytical solutions and physical concepts to explain the effect on
the far-zone antenna characteristics caused by the presence of reactive and lossy
plasma sheath on the antenna surfaces. Once these interaction mechanisms are
understood, a purposeful control of the plasma configurations by aerodynamic shap-
ing of the vehicle, and perhaps by opening slots in the plasma sheath (Cuddihy, et al,
1963) or some other means will hopefully reduce the undesirable antenna pattern
changes and signal attenuation to levels that are tolerable.

A simplified version of an aerospace vehicle is shown in Fig. 1-1a and 1-1b.
It is a composite body consisting of a hemisphere, a section of a cone, and a section
of a cylinder. Some sections of the body may be coated with a dielectric layer. A

problem of current interest involves a radiating slot on the cone surface when the

1
Chapter references are found at the end of each chapter.
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vehicle is surrounded by a plasma sheath. We would like to find the changes in the
antenna impedance, in the radiation pattern, and in the absolute gain with the onset
of the plasma sheath, The plasma sheath may have an axial slot. The plasma slot
may be displaced circumferentially from the cone slot. The arrangement of the
various layers and the slots are shown in the cross section drawing, Fig. 1-1b.

It is clear that the configuration of this simple aerospace vehicle is such
that the vector wave equation is not separable, and therefore the theoretical treat-
ment of the antenna problem is extremely difficult. It appears that one approach to
this problem should be that of first solving an appropriate canonical antenna problem
and then extending the results of this analysis, using some physical insight and per-
haps an experiment, to the vehicle shapes of interest. For the canonical problem
it is advisable to choose the cylindrical geometry where the possibilities of a solution
are favorable. The cross section view of the cylinder antenna would be the same as
in Fig. 1-1b. A narrow axial slot of infinite length is cut in a perfectly conducting,
infinitely long cylinder that is enclosed by a uniform dielectric layer. On the surface
of the dielectric layer is a uniform plasma sheath, A narrow axial slot of infinite
length is maintained in the plasma sheath, The slot of the plasma sheath may be
above the cylinder slot, or displaced circumferentially from it. It is proposed that
for a given tangential electric field in the cylinder slot the solution of the electro-
magnetic boundary value problem be obtained. In the first attack on this problem we

consider a limiting case of some interest. When the plasma layer is then compared
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to the wavelength and highly overdense, we can replace it by a vanishingly thin, per-
fectly conducting shell. This reduces the configuration to a two-region problem.
Furthermore, we take the dielectric under the shell to be the same as outside the
shell. This problem has been formulated in Chapter II as a Fredholm integral equa-
tion of the first kind, It has been solved for the case of the narrow slot, and from
this solution we derive the effect of the slotted shell on the radiation properties of
the cylinder antenna. The cylinder diameters considered range from a small fraction
of the wavelength to 1.8/ 7 wavelength., The spacing between the cylinder and the
shell is a small fraction of the wavelength, The principal conclusion is that opening
a slot in the shell re-establishes the cylinder antenna radiation, except for certain
angular separations of the cylinder slot from the shell slot. For details one should
refer to the radiation curves in Chapter I,

In Chapter III we have an interesting new approach to the solution of the
Fredholm integral equation that appeared in the previous chapter. The approach is
to construct a solution to the Fredholm integral equation from a solution of a
singular integral equation. The singular integral equation is derived by differen-
tiating both sides of the Fredholm integral equation of the first kind. We hope that
this solution will be of considerable value, especially for the discussion of the wide
shell slot, in the future.

In Chapter IV we discuss a more general problem than those of IT and OL

We consider the impedance of a small slot excited by a co-axial transmission line
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and backed by a cavity. Using the Energy Theorem we express the impedance in
terms of certain integrals over the electromagnetic fields. From this analysis it
appears that the antenna will be least unfavorably affected by the plasma sheath when
it is tuned primarily by internal resonances, and the electric reactive energy is
kept at a minimum on the antenna surfaces, It is doubtful if making the cavity lossy
alone would be a desirable feature in devising plasma-proof antennas.

In Chapter V we discuss some suggestions for future work.,

(3]
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II. RADIATION OF AN ELEMENTARY CYLINDER ANTENNA THROUGH ASLOTTED
ENCLOSURE, A. Olte

2.1 Introduction

In this chapter we treat the radiation problems of a cylinder antenna shrouded
by a concentric axially sloted shell. The source of the cylinder antenna is an infinite
axial slot uniformly excited, with the electric field in the circumferential direction.
In the following five sections we present the analyses of the problem.

In the first section we reduce the boundary value problem of the antenna by
employing a conventional series representation of the fields to a Fredholm integral
equation of the first kind, The integral equation uniquely determines the tangential
electric field of the slotted shell for the given source on the cylinder surface. The
kernel of the integral equation is complex, non-Hermitian, and has a logarithmic
singularity.

In the second section we briefly discuss the physical aspects of a singular
integral equation which follows by differentiation of the Fredholm integral equation of
the first kind, Hayashi was the first to derive the singular integral equation in a
similar problem. This is discussed in detail in Chapter III of this report.

In the third section we report a solution of the Fredholm integral equation for
the case of a narrow shell slot. Recognizing that in a narrow slot the field distribu-
tion is dominated by the edge singularity we are led to a slot field representation by
a Fourier series of a kind where the first term is the dominant one. This idea has

already been applied by Morse and Feshbach (1953) in discussing the scattering of
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an electromagnetic wave normally incident on an axially slotted, perfectly conducting
cylindrical shell.

In the fourth section of this chapter we report the numerical calculations
which are based on the above solution of the Fredholm integral equation, The pur-
pose of the calculations is to exhibit the influence of the slotted shell on the radiation
of the cylinder antenna. The cylinder diameters considered are, in wavelength,
from 0.2/7 to 1.8/w. The radial spacings between the cylinder and the shell are
0.1/m, 0.05/7, and 0.025/w. It will be obvious that for the parameter values con-
sidered the slotted shell does not significantly modify the form of the cylinder an-
tenna radiation pattern, However, the pattern is rotated by the angle between the
source on the cylinder surface and the shell slot, although for the cylinder
diameters considered the radiation is nearly omnidirectional anyway. Even for the
largest diameter antenna considered the radiation field is omnidirectional to within
+25 percent (Wait, 1959), Therefore, we have chosen to report the ratio of the
radiated power with the slotted shell and without it, as a function of the source and
the shell slot separation angle.

In the fifth section of this chapter we discuss the accuracy of the approximate
solution of the integral equation, and the error reflected in the power radiated. We
also discuss some of the physical implications of the solution.

In the last section we briefly discuss and summarize the main features of

the results. The slotted shell prevents radiation only for certain parameter
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combinations; for most others, the radiation remains the same and for some it is
even enhanced.

2.2 Recduction of the Boundary Value Problem to a Fredholm Integral Equation of
the First Kind,

We consider a wedge waveguide of width 26 o feeding in the lowest order
transverse electric mode a perfectly conducting circular cylinder of radius a, as
shown in Fig. 2~1. The cylinder is concentrically shrouded by a vanishingly thin
perfectly conducting shell of radius b, The shell has an axial slot of width 2¢o° The
center-to-center circumferential displacement of the shell slot and the cylinder slot
is indicated by the angle 6., We employ a right-hand circular cylindrical coordinate
system (r, §, z) for which § is measured counter-clockwise from the center of the
shell slot and z is along the axis of the cylinder. Tie constitutive parameters € and
1 are assumed to be real., The rational MKS system of units is used and the time
dependence of ejwt is implied for all field quantities.

We have a two-dimensional problem, since both the antenna structure and the
source is independent of z. Furthermore, it is a three region problem:
r< 8; agrgb; r>b. For this particular study we limit it to a two region problem
by considering the tangential electric field of the cylinder slot as given. We set out
to find the fields in the coaxial region and in the free space. The fields are given
(Stratton, 1941) in a series form.,

Foragr2>b

B_J (kr)+C N (kr) oI (2.1)

H=kZZ

Q
Z
n=-o
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m .
E¢ =jwuk Z {BnJ;1 (kr)+CnN;1 (kr)} e-]n¢ (2.2)

n=-0o

_ Wi -jnf
Er == Z n {Ban (kr)+ Cn Nn (kr)}e s (2.3)

[00) .
H = Z sznH:IZ)(kr) o nf (2. 4)

2)" ¥
E¢ = i K jou A H( ) (kr) e inf (2.5)

E =- Rl AnH(z) (kr) oinf s (2. 6)

n=-o

where k =wy/ M €.

We regard

E¢(a,¢)Ef(¢), 6-90<¢<6+00

as given and we seek to find

Ey (b, p)=E(p), B, <F

N

.

0
We require that

[00)

jouk > {Bn J! (kb) +C N (kb)}e'j“¢ =E(f), -p <P<P

o
n=-ao

=0, ¢O<ﬂ<21r-¢o (2.7)

11
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~jnp
- ' (ka)+C_N' (k = - +
jupk E: B_J' (ka)+C N ( a)}e £($),0-6 <P<6+6

=0, 0 +90<¢ <2r+(6 —90)

(2.8)

jwukAan)' (kbye 109 =E(f), -p <P<P
n:_

=0, p <p<2m-p . (2.9)

Because of the orthogonality of the circular functions we obtain from (2.7), (2.8)

and (2. 9) respectively

p
o .
. : \ - 1 J0P' g
]wuk{Ban (kb)+Cn Nn (kb) }271 j E(p") e dg (2.10)
_¢0
| 6+6
J‘wuk{B J' (ka)+C_N!' (ka)}21r= j f(m) ™ an (2.11)
nn nn
6 -6
o
¢O
jwukAan) (kb)27r=S (g™ apr (2.12)
_¢o

where ' and 1 are dummy variables of integration. From (2.10) and (2.11)

we obtain

12
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6 +0
(0]
27 wukD (ka,kb) B =N' (kb) _5 g(m)d"™dn
n n n 9 -6
(o]

4

o]

-N (ka)g E(¢')ejn¢'d¢' , (2.13)
_¢0

6+06
o} inn
j2rw u k D _(ka,kb)C_ =-J' (kb) § f(me’™ " an
n n n
]

-0
0

¢O .n¢'
+g (ka)S E(pne’’ agr (2.14)
N

o}

where

D (ka, kb) =J' (ka)N'(kb)-J' (kb)N' (ka). (2.15)
n n n n n

We observe that (2.12), (2.13) and (2.14) give us the Fourier coefficients of the
fields for both regions once the electric slot fields are known. However, we do not
know the shell slot field. We seek to find it by enforcing the remaining boundary con-

dition: the continuity of the tangential magnetic field through the shell slot, i.e.

Ms

( Jkbye™ Z [B J (kKb)+C N (kb{] TP, P PP -

n=-0 n=-q

(2.16)

13
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We eliminate the coefficients in (2.16), and after factoring and transposing of
terms obtain

p
2) o
H (ka) X -7
EO n : 1 E(p')e]np ap | e jng
_ (2)
n=-mw| H

(kb) D (ka,kb)
n

n -¢o
6+6
QO (o]
1 jnn -jnf
n:ZOO Dn(ka’kb) S fmye™dn e ’

6-6
(o]

- < . L17

p <P<P, (2.17)

Interchanging integration with summation on the left hand side we obtain an integral

equation of the form

g

S¢ E(PUK(P', p)ap = g6, p) P <P<P (2.18)

o]

where

o o) @2)

H " (ka) P
K(p',p) = E ?2)' L e]n(jb 2
- H' (kb) D (ka,kb)
n=-c n n

(00 0+06

0
= __1..__. jnn "jnp
n=-om n 6 —90

It is clear that (2.18) is a Fredholm integral equation of the first kind with a
complex non-Hermitian kernel, i.e.

K(p', 9) #K*(p,p'). (2.19)

14
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The kernel has also a logarithmic singularity. Interchanging integration with sum-
mation in the representation of the known function, we have

+6

8
(o)
80, )= f 1k ®n, pyan, (2.20)
0

-0
o

where

®

(a) 1 in(n-)

K (n,p) Z D (ka, &) © .
n=-0o n

(a)

The kernel K'"'(n, f#) is a continuous function of n and . We see that the known

function of the integral equation (2, 18) is obtained by transforming the electric field

of the cylinder slot according to (2.20). We may further simplify the two kernels

by observing that

D (ka,kb) =D (ka, kb)
-n n

-n

1) 1?4
- = n
H(z)zkb) HS) (kb)

and introducing a factor en such that

We have then

15




THE UNIVERSITY OF MICHIGAN

5825-1-F
® H(2)’(ka) €

K(p',9) = = - 2 cos n(p'-p) , (2.21)

néz HS) (kb) Dplkakb)
and
(a) [0s) €

Ka(n,;b):Z ]—)-—(E-g—la)cosn(n-[b). (2.22)

n=0 n

We have reduced the boundary value problem to a Fredholm integral equation
of the first kind with a non-Hermatian kernel. This is a unique statement of the
original problem and no additional conditions need be imposed.

2.3 The Appearance of the Singular Integral Equation

It is well known that the normal component of the electric field must be con-
tinuous through an aperture. It is also well known that the continuity of the tangen-
tial magnetic field through the aperture automatically insures the continuity of the
normal electrical field component as well. The reverse, however, is not true and
therefore the continuity of the normal component of the electric field through the
aperture is necessary, but not sufficient for a boundary condition. The continuity
condition of the normal component of the electric field through the shell aperture in
our case corresponds to differentiating the Fredholm integral equation of the first

kind with respect to . We obtain

g

6
0 0 .
IJ E(BNK!(P, P)ap’ 5 1k (n, gan, -p_<p < (2.23)
- 0]

-6
o o

+6

16
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where the primes indicate that the kernels are to be differentiated with respect to §.
The integral of this type in a similar problem was first obtained by Hayashi (see
Chapter III of this report). The singularity of the kernel K(§', §) by differentiation
has been increased to a Cauchy type singularity and therefore we have to take the
integral in the principal value sense which we explicityly indicate by P in front of
the integration sign. Whereas the Fredholm integral equation exists as ¢->t ¢0,
(2.23) does not and we restrict f to the open interval —[bo <p <¢0. The kernel
K(a)'(n, §) is continuous and the right hand side of (2.23) exists even as 0->+§ o
Evidently the Cauchy integral equation for this particular problem admits a set of
solutions. Somehow one has to choose a solution that satisfies the Fredholm

integral equation, One may possibly choose from the set a solution that satisfies the
well known condition of the edge singularity at § = + ¢O. This solution is a sum of a
certain particular integral and a certain general solution of the homogeneous equation|
of (2.23), both parts satisfying the edge singularity condition independent of each
other. The amplitude of the general solution of the homogeneous equation clearly re-
mains arbitrary. If finding the proper amplitude of this part of the solution gives us
the unique slot field, then it may be determined by substituting the total solution in
the Fredholm integral equation. These appear to be the physical aspects of the

singular integral equation method used by Hayashi in constructing a formal solution

to a similar boundary value problem in the subsequent chapter.

17
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2.4 Solution of the Fredholm Integral Equation for the Case of a Narrow Slot.

The Fredholm integral equation of the first kind (2.18) was derived for the
cylinder slot of arbitrary width 26 o We simplify the problem, but retain its
essential features by letting 60-—>0, because then we can let the slot field assume a

& -function distribution, i.e.

\'
f(¢)=f6(e -$) as 6 —>0, (2.24)

where Va is the slot voltage.

In this case then

6+6
(0]
glo, ¢)=Vaf ﬁ%‘—n) K(a)(n, f)dn = i v, K(a)(e, p). (2.25)

6 -6
o

From (2.21) and (2.22) we observe that K(§', §) and K(a)(e, ) may be divided into

even and odd parts with respect to both variables, i.e.

K(p', ) = Ke(¢'. ¢)+Ko(¢', $) (2.26)
k', ) =Kf:‘) (0, ¢)+K0(a)(e, p), (2.27)
where
@9 f B0 o
K (p',0) = £ - cos(nf ")cos(nf)) (2.26a)
e n=o0 Hf) (kb) Dn(ka, kb)

18
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oy B ), —

K (§'9) = Z; , sin(n')sin(np ) (2.26-b)

o n= Hflz) (kb) Dn(ka: kb)

() ® €
Keal o,p) = Z D_(k:—l-gl;) cos (nf )cos(nf) (2.27-a)

nso n °

(a) 0 2

Ko 6,9) = Z B-;Wsm(ne)sin(nw (2.27-b)

Since the unknown slot field may also be represented by an even and an odd part, we

have
E(p) = E () +E_(P) (2.28)
and the Fredholm integral equation becomes
po ¢o
E@DK (B1, f)agr+\  EPIK (P, B)apr =L v Eé% preo ¢ﬂ
e e’ 4 O o"* a al e ’ o Ty
'¢o )
-p <P<P . (2.29)

We observe that the first integral is an even function in §, while the second integral

is an odd function, therefore we have that

p
° , , ! (a) (2.30)
S_ ES(PIK (B', )ap =~V K "6, 9), -p <p<p_
o
S¢° L, ()
1 1 t == a -
| EBUR (P Dapr =2V, KO, P, p <P <P (2.31)
(o)

,_
©
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We have succeeded in breaking the Fredholm integral equation into two integral
equations of the same kind, The first one determines the even part of the shell slot
field and the second one, the odd part. Stating the problem in this form means that
we invert two small matrices instead of one large one in order to obtain the same
accuracy in the solution,

Electromagnetic fields cannot have large spatial variations over distances
that are small compared to the wavelength, except in the vicinity of the sources, at
the discontinuities in the medium constitutive parameters, and at sharp conducting
edges. The slot field of a narrow slot is therefore dominated by the edge singularity.
We separate this out in the first term of a Fourier representation of the even and odd
parts of the slot field, i.e.

a

©
E (¢)=——Q—+Z acosm (2.32)
© 2 .2 g=1 ¢ ?,
7|9 -p
o
and

gb ®
EO(¢)=—1——+ Z b smg’—'ﬂ . (2.33)

2 2 =2 9 p
rf?-gt 47 °
We are guided in selecting these particular forms of the field singularities by
the work of Sommerfeld (1964) and Millar (1960) on the diffraction by an infinite slit
in a vanishingly thin perfectly conducting plane screen.

The left-hand side of the integral equation (2. 30) takes on the form

20
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g, & (6", prag g, ®
a —9—;,——7 + dﬁ)'zl: aqu(jb', @) cosc%m .
_po ”’po_(’bv) __¢o q= 0
For the first term we have after using the series representation for the kernel and

by interchanging summation with integration

H(2)'

)
. & ¢ - (ka) cos(nf ) ° cos(n@')dp! i}
20 ka, kb 2
© pso 1 Hi)(kb) Dn( 3, kb) _¢o n){bo—([b')
)
@  H " (ka) J (np )
n o ' o
%o Z “n_(2) D (a, kb)  osmf)
n=o Hn (ka) n

Interchanging integration with summation in the second term we have to evaluate

g

S Ke(fb',¢) cos%ﬁ ag’
4 o

o
which after using the series expansion for the kernel and again interchanging inte-

gration with summation becomes

@) p
00 H* (ka) o '
¢ D : cos(nf) cos(ny)')cosﬂ ap' =
= n H(2) (kb) Dn(ka, kb) .

n _¢O

® H' (ka) sin(np )
2 q+1 n n 0]
4f 0 Z (-1) ) Dn(ka, kb)

cos (nf) .
(am)*~p )°

21
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By this the integral equation (2.30) has been converted into the form

@ 1) (ka) J (nf )
a Z e —— O—2- cos(nf) +
o £J H(2) (ib) Dn(ka, kb)
n
(2) .
5 & Q1 o H" (ka) . ns1n(n¢o)
(29 ) (-1) a - cos(nf =
° qz « 25 1 ) Do) ()’ g )
1 (a)
aVaKe (0,9) . (2.34)

Integrating (2.34) term by term on the interval —¢O <P < ¢0 we have

@ @)

H  (ka) J (np )  sinnp )
a € n ' [6) o) o) +
0 2 i n H:IZ) (kb) Dn(ka, kb) n¢0

© 52 1) sin’(n )
n [0

®
4¢ (_1)q+1 a ' 1 -
Oqzﬂ: 4 Z Hflz) (kb) Dn(ka’kb) (q7r)2 —(n¢0)2

n=1

@ € sin(ng )

1 n o)

- E . 2.35

a Va — D (ka, kb) n cos (nf) ( )
n=o n 0

Multiplying (2. 34) by cos (mnf / ¢0) and integrating term by term on the same

interval we have
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® H(z)'(ka) J(nf ) nsin(np )
n o o 0

+

a T

° a7t B 0w Dplke k) (m)” n )°

& s A N T ~ap )] [(mn g )]
Q .

) o sm(n¢o)

" Va Z D (ko 50) 5 5~ cos(nb). (2.36)
n=1 n (mr) -(nibo)

We may summarize (2. 35) and (2. 36) in the matrix notation as

h(e)] a] =1y e (2.37)
q a am

mq

where

(04} 2) .
h(e) _ Z . Hn (ka) Jo(n¢ O) Sln(npo)
oo £ n H:IZ)' (kb) Dn(ka, kb) n¢0

(2) .2
b= 4 (-1)0*? i oy G 1 sin f ) ag1
oq o = Hl(lz)' (kb) Dplkas k) () ~np )
® (2) .

h(e) - Hn (ka) Jo(n’b o) o s (nﬂo) m > 1
mo Sy Hf) (o) Pplk&KD) (02 ap )’

Q

@2y 2 .2

Lle) =2‘02 (_1)q+1 Z‘: H (ka) 1 n sin (n¢o)
mq o &

P Hflz)'(kb) Dn(ka, kb) Eqﬂ)z_ (npo)ﬂ [(m)z _(npo)ﬂ

m>1,q>1,
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€ sin(np )
_ 2, 2 2 cos(nf)
L D (ka,kb)  nf_

n=o

—
°
S’
]

I(e) & n sin(nf o
= cos(nf), m> 1.
m ; l:Dn(ka, kb) 2 ¢0)2:]

Turning to the derivation of the odd part of the slot field, we observe that the

left hand side of the integral equation (2.31), after the substitution of(2,33) becomes

p

¢o )
sb'K( )ag'
bg ~ ¢d¢ +S ag’ Zb K(ﬂ) ﬁ))sm(%)
J}) _(¢) po q=2

Representing the kernel by the series (2.26-b), interchanging summation

with integration and integrating once by parts the first term becomes

o (2)' n
by Z (ka) sin(nf ) 2’bo ° =) 2 cos x dx
£ H](az)'(kb) D (ka, kb) T . nf_

and the second term after interchanging summation with integration twice becomes

@ 1
(2) qm sin(np )

(kb)

The integral equation (2. 31) now takes on the form

49 g: (1)q+1b (ka) 0 .
Z (2)' D (ka,kb) A2 5| sin@p) .
(am) -(n¢o)
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(o) 29 n¢0
2 o X 2 .
b Zr (2)' D (ka,kb) 7 j 1- (nﬁ) )" cos x dx| sin(nf) +
(kb) “n o
n= n 0
@ o 0]
(2)'
po Z _l)Q+1 b Z H 1 gr sin (nf )_Lm(nm ]
14 (2)' D (ka, kb)
n=1 H n ) _(np)

lVK ©,8) . (2.38)

Multiplying (2. 38) by sin(mz / jbo) and integrating on the interval —[Do <P gjbowe

obtain an infinite set of algebraic equations. We summarize them in the matrix

form as
E(O)] b:\ I X(O)] ’ (2.39)
mqg q a a m
where
(2)| . n¢°
4 @ (ka) sin (n§ ) 2
h(0)1= — Z: (2)v D (lia kb) R 5 e ; ) o
m T n=l (kb) “n' * (m7)” -(nf ) Vo
h =ap (-1)7*1 Hflz)'(ka) 1 an sin’(of o
o) ® H(z)'( ka) 0 sin (npo)
x - - sin (nO) s M2 1.
m ,,Z=; © by Dplkskb) 2 (n¢o)2 z
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expense of the rest of the matrix.

A, i.e. kb-ka<< 1,

orientation of the shell,
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We have reduced the problem of finding the shell slot electric field to an

indicate the physical quantities we want to find,

By the inclusion of the edge singularity in the
first term for each part of the slot field we have enhanced the first column at the
The enhancement is particularly large for a
narrow slot. Thus the problem has been set up in a way so as to lead to the narrow

slot approximation. However, before we delve into the numerical details, we should

We are interested in the narrow slot antennas. Further, we restrict the

cylinder with the shell will be essentially the same as for the cylinder alone.

on the slot field in the next few paragraphs.

The power radiated per unit length by the shell slot is given by

radial separation of the shell from the cylinder to a small fraction of the wavelength

Under these conditions the form of the radiation pattern of the

However, the power radiated into the free space will depend most probably on the

Therefore we want to show how the radiated power depends

2T (00)
. (2) -jnf 2 % _(2)x jn'g
. _1_R 5 Z ]wukAn Hn (kr)e Z k An Hn (kr)e rdf
2 e n=-m
0

o' e}
- . 3 * L @2)
Re E: jourk AnAnrHn (kr)H

n=-q

(2)
n

(kr) .
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When kr >> 1 and n <<kr, we may represent the Hankel function and its derivative,

respectively, by

(2) _ iy [}r_ 1+42n1r:|
Hn (kr)Nl/ ke © (2.41)
] 1+4+2n
@) 2 ”[kr' g ’]
Hn (kr)N-] rkr e ’ (20 42)

and taking the limit of the general term of the series as r —> ®, before we perform

the summation on n, we obtain the exact result
Q0
2 *
= 2 A 2.
P Z wukAnn. (2.43)

n=-o

Using (2. 12) we rewrite this as

2
po )
- f E(@)e™ ap
-$
5 |
27wy n=-m IH(Z)'(kb)lz
n
p 2

® c o
1
5 Z _(-E'L— S Ee(y))cos npdp| +

orwp  7° ’Hn (kb)l2 -po

g, 2
S E_(f)sintmp)ag | ). (2. 44)
_p o
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Substituting (2. 32) and (2. 33) in the preceding equation, we have, after the inter-

change of integration with summation

) @ € 9 2. (- )qaq
p=—r J (nf)a -2f n sin(np )
21rzwu n=o (kb)l 2 o0 "o °q=1 (q7r)2 -(n]bo)z
- (-1 )qq7r b
+ 2¢Osin(n¢o) . (2. 45)

q=1 (q7r)2 -(np 0)2
From the behavior of the denominator in the general term of the series we conclude
that only 2kb terms need be considered independent of the slot width. A computation
will show that for a narrow slot the second part of the numerator is negligible
compared to a even for a comparable bq. Only when bq becomes substantially
larger than a0 do we have to take, in some special cases, the second part into con-~
sideration. Also in the first part of the numerator the aq term is negligible com-

pared to the ao of the narrow slot. Thus we have that for a narrow slot,

la |2 2kb € J2(n¢ )
P(ka, kb, § ) —=2 _(27—— (2. 46)
2T W n=o (kb)l

The power radiated by the cylinder without the shell is given by
2 Z2ka

1 v
P(ka)as -:1
2 a
27 wu n=o

——,—— (2.47)
(2) (ka )l
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We define the voltage of the slotted shell as

¢O
v, =b j E(p)ap , (2. 48)

o
and it follows that

V, =ba . (2.49)

The ratio of equations (2.46) and (2. 47) we may write as

2
Vb

v
a

P(ka, kb, 6)
P(ka) -

2
)" Flka, kb, ), (2.50)

where

2 2 0 ) Z‘kj . -1
Flka, kb, ) =| £4 Ty 3 L " (2.51)

- |H‘2"<kb>|2 50 2 | 2
n n

For further discussion we elect to keep Va = a volts, whether or not the cylinder

is enclosed by the shell. Then (2.50) takes the form

2
_:__e_P(ki) (1;‘;)9) ~ l a_ l F(ka, kb, § ), ~ (2.50-a)

and a_ we regard as a dimensionless quantity., The last formula gives the enhance-
ment (or depression) of radiation when the cylinder is enclosed by the shell. Aside

from the essentially geometric factor F, all depends on the amplitude of the ao

term in the shell slot field expression.
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Since Maxwell's equations are linear the result (2.50) is independent of the
amplitude of the source voltage Va; thus the right hand sides of (2.50) and (2.50a)

must be equal, and we obtain

EIE

Iaol . (2.51-a)

Yo
v
a
The last formula expresses the transformer properties of the shell. We
may regard (kb/ ka) Iao‘ as the transformer turns ratio.

We are fortunate that for a narrow slot the ao term is also dominant in the

slot field representation. This assertion is expected to hold when

p <<= (2.52-a)
o)

2b¢0 << (2.52-b)
b-a > 2b¢o (2.52-c)

From (2. 37) with the understanding that Va = a, we have

(e)

a NXO
o h(e)
00

(2.53)

When Dn(ka, kb) —> 0, then (2.53) takes on the particularly simple form

2y
H ™ (kb) cos(nf)

(ka) Jo(n¢0 )

n

a ~ : (2.53-a)
o H(2)

n

The lowest order root of Dl(ka, kb) occurs (Truell, 1943) when kb2¢2-ka, ka1,

that is, when the mean circumference is approximately equal to the wavelength. The
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lowest order root of Dz(ka,kb) occurs when kb =< 4-ka, ka < 2. Of particular
interest are also the roots of Do(ka,kb), because then ao does not depend on the
angle 6., We list the lowest order root of Do(ka, kb) (Jahnke, Emde, Losch, 1960)
for some parameter values of possible interest in Table II-1,

TABLE II-1; Parameters for Lowest Order Root
of DO(ka, kb)

ka kb/ka
31,427 1,
15,7275 1,
10, 4993 1,
1

1

7.8875
6.2702

G W N

2.5 The Results

We are left with the task of computing a . The series expansion of the
numerator and denominator of a involve Bessel functions and Neumann functions.
In view of the intended applications of the results of this study, we restrict the
radius of the shell to kb < 2.

We use the exact series for computing the cylindrical functions of order 0, 1,
2,3, 4 and 5. Recursion relations are used to compute orders 6 and 7. For orders

greater than 7 we use the small argument (Jahnke-Emde-Losch, 1960) approximation

to obtain
ol me) a," (2.54-a)
D (ka, kb) ka ., 2nl ‘kb .
n n|l —(E )

w
-
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H(z)'(ka) _ (l{ﬁ) n+1l

ka . (2 - 54 _b)

H(z)'
n

(kb)

We sum 90 terms in the series determining h:))

and f f)e). We retain only five
terms in the F(ka, kb, ¢O) series. The computations were performed on a digital
computer for the slot width of 0, 06 radians, and ka in steps of 0.2 from 0.2 to 1.8,

for each step, kb-ka 2 0.05, 0.10, 0.20. We elect to present the results in the

following form.

P(ka, kb, 8)

we choose as the ordinate and 6 as the abscissa in Figures 2-2 through 2-10.

A zeroon the ordinate axis means that the source radiates the same amount
of power into the free space with and without the slotted shell, A negative number,
say -20, means that introduction of the slotted shell decreases the radiated power
to one hundredth of the previous value, while +20 means that the radiated power
is increased by a factor on one hundred. The origin on the ordinate axis (8 =00)
means that the cylinder slot is under the shell slot, and +6 = 180° means that
the slots are on the opposite sides of the cylinder. The radiation curves are even

functions in 6.
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All along we assume that the source amplitude on the cylinder remains un-
changed, i.e. the voltage of the cylinder slot remains at 'a' volts. Thus these
calculations do not include the de-tuning of the antenna that must arise in most
cases when it is surrounded by a perfectly conducting slotted shell. However, these
calculations do show the effect.the slotted shell has on the coupling between the line
source of the cylindrical antenna and the radiation field in the free space.

In Fig. 2-2, the antenna diameter is Qﬂ_l A (ka = 0.2), where XA is the free
space wavelength., Enclosing this antenna by the slotted shell increases the radiated
power, the bigger the separation between the antenna and the shell, the more
radiation we get, which is only weakly dependent on the source and the slot
separation angle 8, For kb-ka= 0,05, 0.10, 0.20 the radiated power is increased by
3, 7.5 and 13db, respectively. The maximum increase is when 6 = 1800 and the
minimum when 6 =0, The difference between maximum and minimum for a given
kb-ka is only about 2 db.

In Fig. 2-3, we have increased the antenna diameter to ka =0, 40 and the
closer the shell is to the antenna the more radiation we get, which is just the
opposite situation we had when ka = 0,2 in the preceding figure. When kb-ka = 0, 05
the radiation is increased by 11, 5db when 8 = 00, and increased to 23.5db when
9-—>1800. When we increase kb - ka to 0,10 the radiation very significantly de-
creases; when 8 = O0 we have only -1db, however the radiation increases to 13db

0
as 0 increases to 180, Increasing kb-ka to 0.20 further reduces the radiation;
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ato = O0 we have -18db and the radiation increases only to +2db as 9—>1800.

In Fig. 2-4, we have ka = 0,6 and the farther the shell is from the antenna,
the more it depresses the radiation. When kb~ka = 0. 05 the radiation is -3db at 6 =0,
but decreases to a deep minimum (the approximation gives zero radiated power, but
this is not expected to be true)at 6 = 360, and from then rapidly rises to +6db as
6 —)1800 . Increasing kb-ka to 0,10 depresses radiation at 8 = 0° to -5db and the
deep minima moves to 6 =41(;) as §—>180° the radiation recovers to +2.5db. As
kb-ka—>0.2 the curve is depressed all along below zero, and the deep minima moves
further to the right.

In Fig. 2-5 the increase of ka to 0. 80 has brought, maintaining the same
order, all three curves closer together, and minima have moved further to the right.
When 6 = 00 the radiation is a few db below zero; at 1800 either just above or helow
Zero,

In Fig. 2-6 we have ka = 1,0, The minima have moved farther to the right
and for the three curves occur between 90° and 1000. The order of the curves has
been reversed: the larger the kb-ka value, the more radiation we get into the
free space. At9 =0, and 180°, kb-ka = 0. 05 gives 0 db, kb-ka = 0,10 gives
+ 0.5 db and kb-ka = 0,20 gives 2 db,

In Fig. 2-7 we have ka=1,2 and the minima are occurring between 105°
and 11 50. The curve ordering remains the same as in the preceding figure, but

the radiation is enhanced for most 6 angles, especially so for kb-ka = 0,20. For
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this curve the radiation at 6 = 0° and 180° is +13db and +16db, respectively.

In Fig. 2-8 we have increased the antenna radius to ka = 1.4, and the
minimas now occur between 115° and 1200. The curves have started to reverse the
order. The kb-ka=0.20 curve has dropped about 15db below the other curves and
is approximately where the other two curves were in the preceding figure. For the
high curves the maximum radiation is 18 db, All three curves show a second
minimum starting to form at 6 = Oo.

In Fig. 2-9 we have increased ka to 1,6, and the reversal of the curve order
has been completed, i.e. increased kb-ka decreases the radiation. Also two sets of
minima have formed: the new set is between 10° to 20° and the old set has moved
to 125O to 1300. The radiation is increased only by 6.5 db at the maximum.

In Fig. 2-10 we have ka= 1,8, and all three curves have moved very closely
together. The first minima occur at about 33° and the second at about 1300. At 0°
the radiation is -1db; at 80° and 1800, it is + 1 db.

2,6 Discussion

In the figures presented, we have increased the radius of the cylinder, a,
in nine equal steps from 0,1/7 A to 0.9/x A. In all nine cases we have shown the
effect of the slotted shell on the radiation when the radial separation between the
cylinder and the shell is 0. 025/7 X, 0.05/7 X, and 0.10/7 A. The shell increases
radiation independently of 8 when a < 0.1/ 7 A. A very substantial increase in

radiation is maintained as the radius of the cylinder is increased to 0.2/7 A. As a

is increased to 0.3/ A and beyond, a deep minimum appears in the curves which
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indicates that for those angles the slotted shell decouples the cylindrical antenna
from the free space. When a is 0.4/7x 2, or O. 5/ X the slotted shell leaves the
antenna radiation largely unaffected for extensive ranges of 8, except when the
slot is in the 90O range from the source where then deep minima occur. As a is
increased to 0.6/ ) the antenna radiation is enhanced, and also becomes sensitive
to the cylinder and the slotted shell separation distance. The same thing remains
true as a is further increased to 0.7/7 A, except that a new minimum appears to
form at 6 = 0, As a is further increased to 0.8/ 7 A, both the radiation enhancement
and the sensitivity of the radiation enhancement on the cylindrical antenna and the
slotted shell separation markedly decrease for all 6 values. Two deep minima have
formed as well. Increasing a further to 0.9/ X reduces the radiation enhancement
practically to zero, and the radiation becomes independent of the antenna and the
slotted shell radial separation. This also occurred at a = 0.5/7 A. This
phenomenon appears to be associated with the 'resonances' in the coaxial cavity
formed by the cylindrical antenna and the coaxial shell. The 'resonances' occur
when Dn(ka, kb) = 0. For our range of variables the first 'resonance' appears when
ka~1, the second when ka~2, i.e. a~0.5/7 ), and 1/7 A, respectively.

In equation (2, 50-a) essentially a geometrical factor relates the radiated
power per unit length to the square of the amplitude of the ao coefficient. This
factor we denoted by F, and in particular cases considered here, the infinite series

was approximated by five terms, i.e.
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3, ¢ J2 (n¢ ) 2 €
F(ka, kb, ¢0) = (2), . (2.55)
n= (kb)' n=o (ka )I

We plot F(ka, kb, ¢0) in Fig. 2-11 for the same ranges of variables as appeared in
the preceding figures. Since the shell is close to the cylinder in the three cases
considered we have that the factor F is close to unity when ka > 1. Only for
ka <1 do we have a substantial increase of the factor above unity. Using this
factor we can very simply obtain the ratio of the slot voltages from the preceding
figures. From (2.50) we have

2
Vb P(ka, kb, 6)
10 log 7 i

P(ka)

2
=10 log ~10 log (1‘:—2) F(ka,kb,[bo] . (2.56)

We notice that in the second term on the right hand side the argument of the
log is close to unity. Thus for most parameter configurations the Figures 2-2
through 2-10 give also directly the ratio of the slot voltages as a function of 6.
We may add that in this approximation the phase of Va is constant between the
minima, and it suffers a 180° change as one goes through a minimum. The slot
voltage phase is given by the phase of 1/ h( ) and the 1800 phase change comes
from the sign reversal of Io e) on going through the minimum.

We have presented the approximate solution of the integral equation (2. 30),

and discussed to some extent the physical consequences of this solution, The

method of approximation suggested itself from the results of the narrow slot in
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a plane screen. The use of the same leading terms in the slot field representation is
justified largely on the physical grounds and it leads to the geometrical restrictions
(2.52). Although we feel the approximation is a good one for the range of parameters
discussed, a quantitative statement of the slot voltage approximation would be very
desirable. We may truncate the matrix in(2.37)and invert it. This procedure is
laborious, the results may not be conclusive as to the error in any case, and
particularly so when the original approximation is a good one. We choose to go

back to the integral equation itself. We rewrite it in the form

(a) - p
I:Ke (e,¢)] f ° Ee(p')Ke(yi',;b)dp'- = 0, (2.57)
_¢o

When we use the approximate solution, the left hand side of the above equation will

not be quite zero. This difference we denote by /_\.(e) (p), i.e.

0

-1 ¢
2 Cpr = (%6, p) S ° ELPIK (L P L, - <p< P

o
(2.58)

where the prime on the field indicates that it is the approximate solution we have

obtained, i.e.

Xﬁe)(e) .
E! g = ©) . (2.59)
oo w" ¢i-(¢ ')2
We find that
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2)) 14 <2 1) €5 @mp)

(e) 0 (a) n no 'o
ATP) = T [K (9,¢ﬂ Z_ - cos(nf)-1 .

hf)(z) e n=o HS) (kb) Dn(ka, kb)

(2.60)
In Table II-2 we present some of the calculations from (2.60)for the parameters of

(a)((), ) series have been

Figs. 2-2,2-5,2-6 and 2-9. The Xf)e) (6) and the K
e

summed to 90 terms, the other two series to 200 terms. The calculations showed

that the approximate solution (2.59) 'satisfies' the integral equation (2.57) essentially

independent of the angle 6. In the table we have shown how A( e)(ﬁ)) depends on the

field point coordinate ¢ We have carried out the computations for + $ =0, 0.015,

and 0, 030, i.e. at the slot center, half-way to either end, and at either slot edge.
(e)

TABLE II-2: VALUES OF A ()

A(e) for ¢o = 0. 030

ka kb-ka r $=0 f=+ 0,015 f =+ 0,030 ]
0.40 0. 05 0. 030-j0, 013 -0, 063+j0, 032 0.20+j0,10
0.40 0.10 -0, 015-j0, 0045 0. 037+j0. 0097 -0,12~j0, 030
0.40 0.20 -0, 010-j0, 0017 0. 022+j0, 0035 -0. 072~j0, 0L 1
1.0 0. 05 0. 0004-j0. 0000002 -0, 0004+j0. 000001 0. 0014-j0.000004
1.0 0.10 0. 0010-j0. 000008 -0, 0016+j0, 00002 0, 005-j0,00006
1.0 0.20 0. 0040-j0. 00023 -0, 0077+j0. 0005 0. 024-j0. 0016
1.2 0. 05 0. 0052 -j0, 00001 ~0. 004+j0, 0002 0. 017-j0. 00067
1,2 0.10 0. 0082 -j0. 00055 ~0. 013+j0. 0015 0, 043-j0., 0048
1.2 0.2 0. 024-j0, 041 -0, 047+j0. 090 0.14-j0,27

1.8 0. 05 ~-0. 0060+j0, 000027 0. 0033+j0, 000085 0, 013-j0, 00033
1.8 0.10 -0. 0050-j0. 000037 0. 0046+j0, 00018 -0, 015-j0, 00062
1.8 0.2 -0. 0036-j0. 0001 0. 0053+j0, 00026 0.017-30. 00083
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The approximate solution 'satisfies' the integral equation better at the slot
center and the worst at the slot edges. Also it appears that the integral equation
is 'satisfied' better when the radiation is insensitive to the cylinder and the shell
radial separation, i.e. when we are closer to some particular co-axial 'resonance'
than when in between them,

In order to be able to make a quantitative estimate of the error we rewrite

(2.57) in the form

g

o

o
N T (A v v = (a) - (e)

S_ {Ee(’b) E(f )} K, (P, p)ag' =K " (6, 9) [A (¢)] , (2.61)

Taking the absolute values we have

ko, ¢)

e

<

A‘e)(y)O)' . (2.62)

¢0
‘ 5’6 {Ee(ﬂ') - Egm} K (9", p)ap’

Since Kia) (8, 0) is a real function we may argue that at the maximum

. _ | Je)
Ee(;b)—Ee () =14 (¢0) Ee(jb) . (2.63)
and hence
B ) =[1-| 4% )| ] & . (2.64)

From Table II-2 and the last formula we compute that the maximum possible error
in the slot field is 22 percent for ka = 0.40, 2.4 percent for ka = 1,0, 32 percent
for ka =1,2 and 1.7 percent for ka = 1,8, For the radiation this corresponds to

maximum errors of 1,7, 0.2, 2.4 and 0,16 db, respectively, Thus we feel that the

50




THE UNIVERSITY OF MICHIGAN

5825-1-F

maximum possible error in the data plotted with the exception of the radiation
minima, should be a few tenths of a db when the curves are close together, and a

few db when they are separated, i.e. when we are far from a particular co-axial
resonance. The nature of (2.45) indicates the minima in the radiation coupling curved
for the slot width considered should be at least 25 db deep. Some further work is
necessary to establish the depth of the minima.

We have computed the radiation through the shell for three different shell
spacings from the cylinder. For the parameters we have selected it would appear
that bringing the shell closer to the cylinder in most cases gives stronger radiation
than letting the shell be farther away from the cylinder. However, the type of the
problems we have does not allow us to extrapolate these results in either direction.
Further calculations are necessary to establish this behavior. However, we may
offer some comments based on simple physical arguments. It would appear that the
radiation goes to zero as the slotted shell coalesces with the cylinder for
¢0 <0 <2r -¢O, i.e. the source is not under the shell slot, because then the
source is enclosed by a perfectly conducting medium which precludes radiation.
When the source is under the shell slot (-¢0 <0 < ¢o) as b->a, then of course we
have the familiar situation of a source on the perfectly conducting cylinder, These
comments are also supported by some additional calculations for the case of
Fig., 2-3 (ka = 0.40). These were done for kb-ka=0, 025, 0,010, 0. 005, and the

radiation was successively reduced as kb-ka was decreased from 0, 050. The other
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limit, that of increasing kb-ka to infinity for a given ka has no practical significance.
Increasing kb-ka beyond 0,20 we may expect the radiation alternatively to increase
and decrease.

We may also ask the physical question: How does the radiation get out when
the source is not directly visible through the slot ? In an attempt to read some

physics into the mathematics we may compute the Fourier coefficient of the E g

component of the electric field (2. 3) in the co-axial space. Taking the cylinder slot
voltage at 'a’ volts, we have that

1
2w Dn(ka, kb)

. 1 ' o~ 1 1 _NJ! [ Jne
jwp kl:Ban (kr)+ CnNn (kril {En (kr)Nn(kb) Nn(kr)Jn(kbE’ e

- El;l(kr) N;l(ka) -N;1 (kr)J;1 (kail ao Jo(njb O) } s (2.65)

where the approximate sign enters because we use the narrow slot approximation
for the shell slot field, The first few coefficients we cannot discuss without some
numerical computations. However, when ka < 2 andn >> kb, we may use the

small argument approximation of the cylindrical functions, and obtain

ka ,n+1 kr ,n-1
=) T ]

jwp k BJ' (kr)+C N, (kr) ~-—{[(ka n-l -
[(_ - ka n+l1l ka n-1

) (kb a J (n¢0)}, kb <2, n>>kb, (2.65-a)

From (2.65-a) we have that on the cylinder surface

jwuk[B 3 (ka)+C N' (ka)| o = (2.65-b)
nn n n 27
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and on the shell surface
1
s 1 + ] Ay — . . -
jwupk I Ban (kb) Cn Nn (kb]... o aoJo(nﬁo) (2.65-c)

It is clear that many coefficients are necessary to approximate reasonably well the

E g component in the co-axial space. The same statement applies to the other two
field components. No Fourier coefficient alone under any conditions dominates the
field components in the co-axial region, even in the case when for some particular
coefficient Dn(ka, kb)->0. From this behavior of the Fourier coefficients we may
conclude that no simple model may be devised to explain the transfer of power
through the co-axial region. The power transfer results from the interference of very|

many Fourier coefficients.

2.7 Conclusions

We briefly summarize the salient features of the numerical results of this
study. With a fixed magnetic line source on the cylinder the addition of a relatively
close fitting slotted shell:

1) enhances radiation for all source and shell slot separation angles 9 when
the cylinder diameter < 0.5/ #),

2) leaves radiation roughly unchanged when 0,5/ X < the cylinder
diameter < 1.1/ 7 A, except for a deep minima in the vicinity of 6~ + 900,

3) enhances radiation when 1, 1/ 7 A < the cylinder diameter < 1. 5/ T A except

for a deep minima in the vicinity of 6 ~+ 11 00,
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4) leaves radiation roughly unchanged when 1.5/ 7 X < the cylinder
diameter <2 / ), except for a deep minima in the vicinity of 0 ~+ 450, + 1350.

The deep minima in case 2) is associated with the lowest root of Dl(ka, kb)=0,
and in case 4) with the lowest root of Dz(ka, kb)=0. It appears that radiation will
have no deep minima when Do(ka, kb)=0, or very close to zero. Some of the antenna
parameters for which this will occur are shown in Table II-1,

We also note that the theoretical work on the problem has been carried to the
point where the numerical calculations can be carried out for wider slots, if we so
desire. In this particular theoretical work the solution of the Fredholm integral
equation of the first kind is based on the truncation of two infinite matrices. It
would appear that this particular method of solving the fundamental integral equation
of the problem has been put in the most favorable form for carrying out further com-

putations.
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III. THEORY OF ELECTROMAGNETIC FIELDS FOR COAXIAL CIRCULAR
CYLINDERS WITH A SLOT AND MAGNETIC LINE SOURCE. Y. Hayashi

3.1 Introduction

In this chapter it is shown how to solve the Maxwell's equations for coaxial
circular cylinders with an axial slot of arbitrary width and an axial magnetic line
source. This is a simplified version of the solution for coaxial circular cylinders
with arbitrary number of slots and arbitrary number of axial electric and magnetic
line sources (Hayashi, 1964a).

The result obtained here is exact and rigorous, because it satisfies the
Maxwell's equations in the domain, the boundary condition on the walls of the
cylinders, the radiation condition at infinity, the edge condition at the edges of the
slot and the continuity condition at the slot. The result is also true for any values
of wave number and radii of the cylinders.,

First of all, the field is represented by Fourier series with unknown
coefficients. Then a singular integral equation is derived for the unknown coefficients.
The singular integral equationis solved exactly by the theory developed by the author.‘
As an example, the interesting case of a narrow slot is presented in a form ready

for a numerical calculation.

3.2 Reduction of the Problem to a Singular Integral Equation

Suppose that the structure of the perfectly conducting cylindrical shells are

described, in the cylindrical coordinates as follows (Fig. 3-1)

56




.r-—— THE UNIVERSITY OF MICHIGAN

5825-1-F

S
v

FIG. 3-1

Wall: r=a, 0<p<2r and r=b, egf <2r -
Slot: r=b, <P <o
Assume that the axial line source is located at

Q : r = a, ¢=¢O

In this case, as is well known, Maxwell's equations are reduced to the two-

dimensional wave equation, i.e.

2
Au+k u=0 (3.1)
. e 2 2 . .
where u = Hz = axial magnetic field andk™ =w €u . The rational MKS units are
employed and elwt time dependence is suppressed throughout,
The requirements on u = Hz are as follows,

The radiation condition

lim rl/z{g%+iku}=0. (3.2)
> o
The boundary condition
du _ 0 on the wall (3.3)
an L) L]
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The continuity condition, i.e.

d
u and ﬁ are continuous through the slot. (3.4)
The edge condition
(3.5)

u = O(P_l/z)

where p is the distance from an edge of the slot.

As a solution of (3.1) which satisfies (3.2), u is represented as

Q

u=u = AH (kr)emﬂ, (b<r)
e ; : nn

n=-o

©
u=u, = {B J(kr)+CH (kr)}emp + fH (kR),
i E : nn nn 0o
n=-mw
(agr<h) (3.6)

where Jn and Hn are the Bessel function and the Hankel function of the second kind,

f is an arbitrary source constant, and R is the distance from the source to the point

of observation,

It is easy to see that (3.3) and (3. 4) are equivalent to

ou,

ﬁ =0 (r=a 0P <2 3.7
aue aui

S 57  (r=b, 0cp<om (3.8)
ou

—aTe = 0 (r =b, Q<¢<27T—Q) (309)

o8
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u, =u (r =b, -a<p<a) (3.10)

On substituting (3. 6) into (3.7) and (3.8) and making use of the orthogonality of

{em;b }, simultaneous linear equations for An’ Bn and Cn are derived with which

Bn and Cn are determined in terms of An as follows,

-H'n(kb) i
2 c— 1 +—
Bn Tn(a, b) Hn(ka) An 7 ka fn
J'(ka)

Q
L

n . _ ' L
n Tn(a,b) ‘:Hn (kb)An fn {Jn(ka)Hn(kb) Jn(kb)Hn(ka)}:}

J;1 (kb)
" rka T, (a, b) fn (3.11)

where

-inf
f =fe °
n

T (a,b) = J' (ka)H' (kb) - J' (kb)H' (ka),
n n n n n

and (') means the derivative with respect to the arguments.
Eqgs. (3.9) turns out, by the substitution of (3.6), to be
© ing 0 ; a<P<2r-a
E : A H (kb)e = (3.12)
n=-co " 2a7(p); -a<P<a.

The upper line of the right hand side of (3.12) is the direct consequence of (3.9),

while 7(@) in the lower line is an unknown quantity which is proportional to E p in

the slot.
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Similarly, from (3.10), we have

@

inf) .
E = H' (ka)A +— f}=0 -a<fP<a, (3.13)
n n

~ T (a,b) Ttka n
n=-o n

(3.12) and (3.13) are the "Dual series equations' with respect to An.

It is easy to see that (3.12) is equivalent to

_ 1 -in6
An -_—_H;l(kb) y T(6) e do (3.14)

L

where L stands for -a< @ <a. Then the substitution of (3.14) into (3.13) gives

& in @ 2
> 5 7(0)e " Ve =-in(kb)” Kp) (3.15)
n=-ow L
where
H;l(ka)
S Tl bm by 2P0
n n
f ein(¢-¢o)

Hp) = ——
ro(a)(ib)’ ne=

4 Tn( a, b)

Interchanging integration with summation in (3,15) we obtain an integral equation with
respect to the unknown function 7. If we solve the integral equation, then A;ls are
defined by (3.14) in terms of 7, Bn's and Cn's are determined by (3.11), in terms of
An's and finally, u, and u, are obtained by (3.6). It is not difficult to prove that u,

lobtained by this way, satisfies all the requirements (3.1), (3.2), (3.3), (3.4), and

k3. 5) if the solution T has a singularity at the edge points, i.e.,
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=067 (3.16)
Therefore, the original problem is equivalent to solving (3.15) with respect to 7 which
satisfies edge condition (3.16).

According to the formulas due to the author (Hayashi, 1964b) the Bessel and

[Hankel functions are represented as follows:

1 0 n 1 o n-1

== +j_ te ' (p) = +j!

I =0 () {1 ]n} e = say () {1 I

n n+1
i(ln-1) 2 -i)n!
H (p) = {22l 2, {1+h } e (p) =R (€ {nn*% (3.17)

n T p n n 2r 2 n

2
where j , j' , h and h' are proved to be quantities of order'&' . Hence, for a

n ‘n n n 4n

positive number N which is sufficiently large, Sn is estimated, whenn > N, as

] 2
S =:-1-ﬂ<£)— §1+s } (3.18)
n n n

2
where s is of order p~/4n. For negative n (3.18) is also true, because we can

n
prove that S =S _ with the help of well-known formulas J = (—l)nJ JH =(-1) H ,

-n n n -n’ n -n
7 =(-1)% and H' = (-1)"H' .
n n n -n

By virtue of (3.18) and the formula
o
cosn@® 1 1 s
; n —21n2-200s0 @70

andinterchanging integration with summation, (3.15) is converted into

S 7(0) N(p,0)de = (@) (3.19)
L
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where
1 N 2 Sn iSO
N(@,0) =lnoT0—0 + E : cosn® + (3.20)
2-2cos O =1 n ﬂ(kb)z
Differentiating (3.19) with respect to §, we have
i sin® 1.,
L =y = = .21
j; 7(6) {2 52 cose k(¢,9)} do = f (9) (3.21)
where

N
k(¢,6)=;- 1+ Z 1-

in® _e—no) (3.22)
n=1 7r(kb)

Equation (3.21) is a singular integral equation with a Cauchy kernel, We will solve
it in the following section by the application of the general theory on the singular

integral equations developed by the author.

3.3 Solution of the Singular Integral Equation

i6
Suppose that z =r e is a point in the complex z-plane, then

t =be , t0=bel¢, -a<f, Pp<a (3.23)

correspond to points on L, i.e., in the slot, and

= bea, cy = be_a

1
correspond to the edge points of the slot,

Then it is not difficult to see that (3.21) is equivalent to

-kt ,t)} 7(t)dt = h(t ) (3.24)
(o] (o]
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1
where 7(t)and h(t ) are functions which correspond to in7(6) and 3 £(9)

respectively under the transformation (3.23). k(to, t) is a kernel corresponding to

k(f, 6) and is

N tn
Kk(t , t) = E : k=2 (3.25)
n+1
° n=-N n t
where
1 .
5 I:— ”‘2 s;l , n> 0
7 (kb)
1
kn = 2 n=0
?-21— 1+ -Lz s:], n< o0
n(b)” I
The solution 7(t) of (3.24) must have, because of (3.16), a singularity at
c+1, that is . /
- limr(t)=0(1 t-c
* (3.26)
t—>¢y

Suppose that M is a set of functions, the element  (z) of which satisfies

the following conditions (i)~~(v),
(i) ¢ (z) is holomorphic in z-plane, except on L, at 0 and o,

(@ =0z ), |z]>wo
(iii) v (z) = O(Z_N),I 2, -0

(iv) lim y(z) =0(1/ {_'_—z-c+1 )

zeci_l
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Wy e )+e @) =h(t), t erL
0 (o] (0} (e}

+ -
where ¥ (to) (ﬁl/ (toD means the limiting value of ¥ (z) when z tends to a point
'to €L, from the left (right) hand side of L. Then we can see (Muskhelishvili, 1953a)|

that a function defined by

F@ = 5 S T - Kz 0 (Dt
L

satisfies (i)~ (v), if 7 is a solution of (3.24) which satisfies the requirement (3.26)

Furthermore, we have,

+ -
Tt )=F t)-F () (3.27)

On the other hand, it is not difficult to see that the general expression of a

function ¥ (z) which satisfies (i)~ (v) is given by

N+1
¥(z) = ;;zi) S t_lz -1 (z, t) %tt)) dt +x(z) Laop z

L
where pn(n =-N, ..., N+1) are constants, A(z,t)is a function similar to k(z, t)
which will be determined later, and

1

x(z) =

f(zc,) 2= c_)
Thus we have found that a solution 7 of (3,24) exists among these functions de-
fined by
(t) =g (t)-F (t)
™ 0 ¥ o

or Ht ) =X h(t W7 (t) (3.28)
o) fo) 1l o
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where

N . x(to) 1 h (t)
kh(to) i _— —Mto, t) _x—(_t)— dt
1, o

N+1 n
Tl(to) ) X(to) Z Ph to )
n=-N
Conversely, on substituting (3. 28) into (3.24), we have (Muskhelishvili, 1953b

’1\”1 = Kh (3.29)

where

Kh = S K(t , t)h(t) dt
L o

_ 1 1 1
K(toa t)" 2 3\ x@){g -t —k(tog )2 {t-§ "A(g:t)} d§ (3.30)
7 x(t) 1, 0

Because (3.29) is of the same form as (3.24), we can see that 7. is given by

1

A 2
Ty = ,XK h + Ty where Ty is again a solution of k72 =K h. Repeating this process,

we have

A
T = AKmh+ T
m

(3.31)
m

+1
where K" is an operator with k-th iterated kernel Km(to, t) of _K(to, t). By the

addition of (3.31) from m =0 to m =m, we have
A = n
= +
TSA n_Zo K h T+l

n
If A is chosen so that”KH< 1, then ij K h converges, and, because we have
n=o
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lim Knh = 0 as the necessary condition for the convergence, then
n->

T(O) = lim T must be a solution of
n—ao
%A <0 (3.32)

Thus we have obtained the solution of (3.24), that is

-3 i; K™ h+ 0 (3.33)
n=0

Especially, if K =0, then (3.33) is reduced to

7\ h+%, (3.34)
(0) .
7 ' has the same form as (3.28), i.e.
N+1
T(O)(t ) = x(t ) E p t" (3.35)
o o n o
n=-N

must be a solution of (3.32). In other words, pn(n =-N, . .. ,N+1) must be de-

termined so that (3. 35) satisfies (3.32). On substituting (3. 35) into (3.32), we have

N+1 N+1
5 X(t)t Sk(t t)x(t)tdt (3. 36)

n-—N n=-N
which is the necessary and sufficient condition for P, with which (3. 35) satisfies

(3.32). After manipulations, we can reduce (3.36) to
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N+1 -N
k = - R - -
m%-mPn ™" D TmonPy NSME-l
n=-N n=m
NZ+:1 N+1
k o p =- B p» 0OKmMZN (3.37)
Js°y ™ n-mn n5ae; m-onn =" =
where
@ = S <t TP g (3.38)
n-m 7wi
L
and B and v are constants defined by
m-n m-n
n-1
> B ™ [2]> b
ms-g M1
n
x(z)z = (3.39)
~ m
Z 0% z lz |<b.
m-n

m=n
[(3.37) are 2N + 1 conditions for 2N + 2 constants pn(n 8-N, ..., N+1) which are

lequivalent to (3.36). Thus, pn(n =-N, .. . N+1) are determined up to a constant

factor,

3.4 A Note On Solution of Non-Singular Integral Equations

Although we have solved (3.24), or (3.21) a solution of (3.21) does not
necessarily satisfy the original equation (3. 19) because (3.31) has been derived by
the differentiation of (3, 19) with respect to . However, we can pick the unique

solution of (3. 19) from the general solution of (3.21), by taking appropriate values of
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pn(n = =N ., N+1). This will be discussed in the following.

1, L)
Suppose that a set of {pn}satisﬁes (3.37), then

N+1

'r(o) = x(0) c. eine
n=-N
where
c By x0): 1
b\l(e16 -eia) (eie —e_ia) (3.40)
satisfies
/1\{ 'r(o) = Q,
or,
S A0y N(p, 6) do = 0 (3.41)
L

where N'(f), ) is the kernel in the left hand side of (3.21), Furthermore,

(o)

7(6) =7p(9)+7 (6)

where Tp(e) is the particular solution A f, satisfies (3.21), or

S {Tp(9)+ o) (g, 6)d6 = £1() (3. 42)
L
From (3. 41) and (3. 42), we have

T ()N, 0)d0 =1 (p)
L P
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or, on integrating the last equation with respect to ¢, we have

S 7 (0)N(p,0)d0 = 1(p)-g (3.43)
L P

where g is a known constant. On the other hand, (3.41) turns out to be

S ) N, 0)a6 =8
L

where [ is a known constant corresponding to particular values of {pn}.
If we change { pn}by {g‘ pn}, or what is the same thing,

if we change 'r(o) by & ’T(O), then

B

T a 'rp + g' 'r(o) satisfies (3.19). In fact,

§{Tp(9)+ % {0 (e)} N(p, 6)do

- {000 + & S 7o) (g, 0)a6= £(9)- g+ & B=1(p) .
i P B i B

3.5 Electromagnetic Field for a Narrow Slot

As an example of the application of the general theory obtained in the previous

sections, we will solve the field of a narrow slot. We assume that the slot is narrow

in the sense that 9

o <<1 (3. 44)
and also that
|ka |, |wo|<1. (3.45)

Then, S0 which is of the order (kb) /4n, is negligible for n > 2. Hence, we can

|assume that N =1, and we have
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-1
1 * +ie sin @ .
b=t “kit,. 0 F [2—2cose +Slsm°J’

where @ = -6. Becauselel =l¢=9 | §|2a|<1,

sin® and cos® can be expanded in power series with respect to @, and we have
L-K(t, 00—t ) & 143 (f-0) +0(a”), (3. 46)

2
[If |sll is so large thatl s |a/ ~ 1, then we have to take one more term in
2
(3.46)., Here, we have assumed thatls1 la < 1:.]
On taking A (to, t) to be equal to k(to, t), one has

1 1 1
K(t ,t) =—5——— \ x() - gt ,t,¢8)dg,
) 1r2x(t)(t-to) g {§ —to ¢ -t )

where L

sty b O={ Lokt st fi -k, oxe-0))

By virtue of (3.46) , we have
i 2
gt & §) =1+5 (f-6)+0(a")

2
which is independent of ¢ if we neglect terms of O(c ). Hence, K(to, t) will be

glt ,t) ! 1
K(t ,t) = 5—=— S x(¢) - d¢ =0
o x(e)e-t ) { C-t, ¢t

o

where g(t , t)=g(t ,t,¢).
0 0
2
Thus we have proved, under the assumptions (3. 44), (3.45) and 0(c )=0, that
K(t ,t) = 0. Therefore, by virtue of (3.34), the solution 7 of (3.21), or the tangen-
o

tial component of the electric field E in the slot is obtained as

70




THE UNIVERSITY OF MICHIGAN

5825-1-F
_-iwe
7'(9)-_‘—21rk EG (6)
_ £ x(0) Q 1 @ nsinn(w-{bo)dw
7 (ka)(kb)* x (W6 -¥) = T, (ab)
—o
2 .
n
n=-1
[(3.47) is rewritten, by virtue of
2 n+l 2
1 _dw(kb) 2 (kb)
T (ab) o () 1+0 () (3. 48)
s
_-iwe
(0) = Tk EG(G)
a © )
ifx(0) 1 Z a B .
) (=) sinn@-§ )
1rgka S xWN6 -v) T b o
~a
2
+x(6) Z p bneme s (3. 49)
n=-1 =
where x(6) = 1 .
b eie 02 _92

[Note that if (3.48) is not true for n=1, then the first term of (3. 49) should be
modiﬁed]

In (3.47), or (3.49), Spn}is determined by the following conditions
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(k__lafo-*"yo)p_1 +k . a p tk +k 0

% PoTE %P TR %Py T

With the knowledge of the distribution of E 0

fields are given by (3.14), (3.11) and (3. 6).
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+ + + + + =
ko a—l P ko ao P, (koal B-l)pl (ko a2 3-2)p2 0
+ + + + =
kjoop vk p otk ap ko +h)py =0
where
o
n
b ,
o =— x(6 )eme dé.
noT o,

(3.50)

in the slot obtained by (3.49), the
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IV. CONSIDERATION OF ENERGY STORAGE AND DISSIPATION IN A CAVITY
BACKED SLOT ANTENNA AS IT AFFECTS INPUT IMPEDANCE AND
RADIATION POWER . A. Olte

4.i Introduction

" In this chapter we consider the interaction of a cavity backed slot antenna with,
the plasma sheath. The slot is small with respect to the wavelength and hence the
antenna is very narrow band. With the onset of the over-dense plasma sheath, the
antenna becomes detuned and this in addition to the usual overdense plasma inter-
ference with the radio waves strongly limits transmission, One could broad-band
the antenna at the expense of the antenna's efficiency by introducing losses in the
cavity. Would this help in maintaining transmissions with the onset of the plasma
sheath? Can we in any other way limit the undesirable influence of the plasma
sheath? We undertook this study in an attempt to search out and define some
favorable modes of interaction., This work is reported in four sections. In the
first section we derive energy theorem for the cavity backed slot antenna. In the
second section we use the energy theorem to express the anténna impedance in terms
of certain integrals. In the third section we derive expressions for the antenna
impedance with and without the plasma sheath both for the loss-less and the lossy
cavity. In the fourth section we discuss and compare these expressions. The
cavity losses do not appear to play any useful role. It appears that the plasma sheath]
interference will be kept at a minimum if the antenna resonance does not depend on

the outside reactive fields, and if thereactivefields on the antenna surfaces are of the
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magnetic type. To the extent these conditions can be brought about by inside tuning

is of continuing interest.

4,2 The Energy Theorem

We consider antenna structure as shown in Figure 4-1. A cavity is cutina

erfectly conducting body of a finite size., The cavity is connected to the free space
y a slot which is center-fed by a co-axial line. We select the input terminals of the
antenna at a reference plane A in the co-axial line. The volume of the co-axial

line from the reference plane A to the opening at the slot we denote by V., the

1’
cavity volume by V2, and the plasma volume by V3. The free space volume bounded

by the plasma surface and the geometrical surface S 4 is denoted by V.. The

Jfollowing electromagnetic parameters are assumed for the respective volumes:

Vlz € (real), R

: € =€ -jer,
Voi &S TI% kg

<
)
n

'_' 14
38 €3 TS3TI& M,

i €, = €,
V4 4 o uo
1 =7 . .
We have that eo =3 , where Mo =4r x10 , and c is the velocity]
C W

bf light in vacuum.
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The Antenna Structure

Figure 4-1
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We start our analysis with the vector identity
- _* _::: sk
V*(ExH)=H*'V xE-E-VxH, (4.1)

where E and ;I are the complex amplitudes of the electric and magnetic

wt
) . Assuming that no

fields, respectively., The time dependence is taken as e
sources are present in the regions enumerated, or on their boundaries, we obtain

from (4, 1) after substituting the appropriate Maxwell's equations,

K)
¥

VeExieg [CFFowmenl, @
We multiply Eq. (4.2) by the differential volume dv and integrate in each region, We
add the results together for the four regions. After transforming the left hand side by
the Divergence Theorem, only two surface integrals remain. The others either van-
ish or cancel each other because of the usual electro-magnetic boundary conditions.
The end result of this operation is

(1) (1) (4)  _(4)
E x H *nds+ JE x H * nds =

Sa Sy

4 . . 2
Z [_(i) ) @ _) ] (4.3)
j . E )-uH -
jw - E (e(i) ) B H dv,
vV,
i
where ; is the outward normal and the superscripts identify the fields of the

respective regions as shown in Figure 4-1,

The time average power radiated by the antenna, Pr’ is
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1 _(4) _ (4 _
> R E x H *n ds (4. 4)
S4

When the surface S 4 is sufficiently far removed from the antenna, then the
power flow is radially outward and the electromagnetic fields locally assume a plane

wave character, and

) S _(4) (@ _
P —>= E x H * nds (4.5)
T 2
S4

In order not to have the question always come up as to how far we should take S 4

from the antenna, we let S 9800, the surface at infinity.

4
We assume that the radial dimenions of the co-axial line are such that only
the TEM mode is propagating. We select the reference plane A sufficiently far re-
moved from the co-ax opening (a fraction of the wavelength is sufficient) to have
the higher order mode fields essentially zero. At the reference plane the fields are
then the sum of the incident and the reflected TEM modes. The amplitudes of the
electric and the magnetic fields mady be associated with equivalent electric voltage
V and current I, respectively. One of the defining expressions is taken as

. o _F _
VI =- E xH *nds (4.6)

Sa

The minus sign is selected to conform to the convention that the positive direcH

tion of power flow is into the antenna. In case of the TEM mode the equivalent

78




THE UNIVERSITY OF MICHIGAN
5825-1-F

transmission line voltages and currents may be made unique by taking the

characteristic impedance of the line, Zo’ as

") T
7 = 1 /e In | -2 , (4.7)
o 27 61 ri

where ri and ro are inside and outside cylinder diameters, respectively.

Substituting (4.5) and (4. 6) in (4. 3) we have

% i [_(i) _ (1 (1) _(1)::]
VI =2Pr tjw = uOH * H -E - (e(i)E ) |dv, (4. 8)
V.
1

Because we have let S 4 recede to infinity, the volume V is infinite. How-
ever, this volume integral is finite because the fields assume the plane wave char-
acter in the far-zone and as a result the integrand vanishes there.

Substituting the respective values of permittivity, in Eq. (4. 8), and

separating the right hand side of (4. 8) into real and imaginary parts,

3 L
_0 _()
VI =2 Pr +w E € E *E dv +

1

i=2 |V,
s . (4.9)
_() _@) _()y _()
+ijSEH ‘H -€'E *E Jdv
i=1 v, L° !
1
We define
W _6
== (1)
u H H = 4w
_(1) _i) (i) (4.10)
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We recognize that wg) and wg) is the time average energy density of the magnetic

and electric fields, respectively, in the i-th region.

With these definitions equation (4. 9) may be rewritten as

) G

R i i

= - + —

5 VI Pr o Vg dv +
Vi

n|e

i=2 i

(4.11)

4
2jw Z j[wg) —wg)jl dv
i=1 Vi

The right-hand side of (4.11) consists of a real part and an imaginary part.
The real part consists of the first two expressions. The first expression is the
average radiated power of the antenna. We identify the physical meaning of the
terms in the second expression by observing that the divergence of the instantaneous
Poynting's vector is equal to the negative instantaneous dissipated power density in
the medium. From this, one may show (Landau and Lifshitz, 1960) that the time

average density of the power dissipated in the permittivity losses is given by

€"

% W — w(i) (4.12)

€ E
i

and consequently the average power losses in the cavity and the plasma sheath P2

and P3, respectively, are given by the terms of the second expression on the right

hand side of Eq. (4-11). The last set of terms on the right hand side we interpret

as proportional to the difference in the magnetic and the electric energies stored by

the antenna in each region, the proportionality constant being 2 w .
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4,3 The Circuit Representation

We define the antenna impedance at the reference plane A by
Z:R-i—jx:;—/. (4.13)

Substituting this in Eq. (4-11) and separating the real and imaginary parts,

we obtain
= + + (4. 14
R =R R2 33 )
where
. _(4) _ (o
Rr='1?:< E xH «ids
S
f04)
6"
W 2 (2)
= - — d
Ry * 1 S g "~
V2
€H
) 3 (3)
R, = S ; dv;
3 II v 63 E
3
and 4
X=§ Xi’ (4.15)
i=1
where

From equation (4.14) we see that the resistance of the antenna consists of

three resistances in series, we denote them by
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the "radiation resistance, ' the '"cavity resistance, ' and the plasma "'sheath
resistance, "

The '"radiation resistance' is given by twice the average power radiated
divided by the antenna input current amplitude squared. The "cavity resistance’ and
the '"plasma sheath resistance" is given by twice the average power dissipated in the
cavity and in the plasma sheath, respectively, divided by the square of the antenna
input current.

From Eq. (4-15) we see that the reactance of the antenna consists of four
reactances in series: the '""co-axial termination reactance, ' the '"cavity reactance, "
the ""plasma sheath reactance, " and the "free space reactance," X., X, X,, and

1" 72" 3

X & respectively. Each reactance is given by the difference in the magnetic and the

44
electric energies stored in the respective region multiplied byﬁ?.? .
In this formulation of the equivalent circuit problem the current I is the
independent variable. The equivalent antenna circuit may be represented by
an ideal current generator that is connected to the impedance Z = Rr + R2 + R3 +
j +X_ +X_+ in Fi =
J[:Xl X2 X3 X4:] as shown in Figure 4-2.

R2 R3 Rr
Pt
I X,
]X4 JX3 JX2
Figure 4-2.
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Specifying the input current in the one-port network corresponds to specifying
the tangential magnetic field at the input terminals of the antenna. In the four re-
gions we must then solve for the electromagnetic fields that satisfy the vector wave
equation and the boundary conditions; a formidable problem for the antenna struc-
ture under discussion here. If we had specified the voltage V at the input ter-
minals, then this would correspond to specifying the tangential electric field (in case
of the TEM mode the total electric field) at the reference plane A and the appro-~
priate circuit representation would involve an ideal voltage generator connected to
an admittance which represents the antenna., The admittance Y is given by Z_l.

The above energy balance frame-work does not give any outright answers to
the antenna problem. It does provide a form which suggests possible mechanisms to
account for and explain some of the observed antenna behaviour. Before we take up
the discussion of antenna configurations of interest we should make some observa-
tion on the realizability of the equivalent circuit representation as well as discuss
some of the circuit aspects of the problem. The formulation of the antenna imped-
ance representation pre-supposes the availability of an ideal current generator, i.e.
a device which produces a specified current that is independent of the load. The
voltage across the load then is a variable and depends for a given current generator
on the load connected to it. For quasi-static situations we have devices that approxi-
mate reasonably well the ideal current generator. For high frequencies such devices
are not available, and the internal impedance of the generator enters the problem.

However, for high frequencies instead of a constant current generator we can
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physically approximate the ideal power generator: a device that sends a fixed
amount of power on the load independent of the load and absorbs any reflected power.
When the antenna and its surroundings are composed of a linear medium, and such a
case is assumed for this discussion, then the ratio of the reflected power to the
incident power is independent of the incident power amplitude, and this ratio then is
of some use in describing the antenna properties. The power of a particular incident
waveguide mode determines the electromagnetic field amplitude. The other main
feature of the mode is its phase. Therefore, the boundary value problem of an ideal
power generator source may be visualized as a waveguide mode incident on the
reference plane A (in our case the TEM mode of the co-ax) for which we seek to find
the amplitude and the phase of the reflected mode. Again we recall the assumption
that the TEM mode only may propagate in the co-ax, and thus the incident and the
reflected TEM modes constitute in our case the total field at the reference plane A,
for all practical purposes. We see that in the ideal power generator boundary value
problem we specify neither the tangential electric field nor the tangential magnetic
field at A, but a partial field of each, namely, the electromagnetic field of the
incident mode. The boundary value problem consists of finding the electromagnetic
field in each region subject to the local boundary conditions and the provision that in
the coax in addition to the incident TEM mode there exists an outward travelling TEM
mode, i.e., the reflected TEM mode. In this case the total tangential electric and

magnetic field at the antenna input terminals, depends on
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the load, i.e. on any changes in the antenna structure. As before, we may associate
equivalent current and voltage at the input terminals, but none of these are now inde-
pendent of the load. However, formulas (4.14) and (4.15) are valid for computing the
antenna resistance and reactance.

The characterization of the antenna that naturally fits the ideal power generator
representation is the reflection coefficient, l-—' . It is defined for any mode, as a
ratio of the transverse electric field amplitudes of the reflected and incident modes,
taken at the reference plane A, The same amount of physical information about the
antenna is contained in the reflection coefficient representation as in the impedance
representation. A well known simple fransformation connects both representations:

Z-Z
o

[ =

Zt 7 (4.16)
0

The amplitude of the reflection coefficient squared is the fraction of the incident
power reflected from the antenna, One often represents the antenna in terms of the

voltage standing wave ratio (VSWR) given by
VSWR = —'l—— (4.16a)
-7

which is the ratio of the electric field maximum to minimum amplitudes in the wave-

guide feeding the antenna,
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Whenever the circuit dimensions are small compared to the wavelength simple
circuits are common in which the resistance and reactance may be varied inde-
pendently from each other. In some cases the antenna reactance may possibly be
varied without significantly affecting the radiation resistances. But this is not to be
expected as a matter of course. Let us assume that in Eq. (4.16) the real part of Z
is fixed and let us vary the imaginary part so as to obtain the minimum power re-
flections from the load for a given ZO and R. The fraction of the reflected power
from (4.16) is

2 (R-Z )2 + X2
M = —=— (4.17)

2 2
(R+Zo) +X

2
The extremum of II_‘| under the conditions discussed above is

2
%H{“l :l= 0 (4.18)

XRZO =0 (4.19)

It leads to the condition that

and this can only be satisfied when

X=0 (4.20)
Clearly this extremum point gives the minimum condition for the reflected power.
And from Eq. (4.16a), we see that whenever I " I is minimum then also VSWR is

minimum. The absolute minimum ( [ =0, and VSWR = 1) occurs when Z=R=Z0 .
We then say that the antenna is matched to the feeding transmission line. In circuit
theory we say that the circuit is in resonance when the reactive part of Z vanishes.

This of course is the series resonance of a simple RLC circuit.
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Similarly we say that the antenna is at resonance when X =0. This condition implies
from Eq. (4.15) that the magnetic energy storage is equal to the electric energy stor-
age in the antenna., The same condition as in the RLC circuit resonance.

4.4 The Broad-Band and the Narrow-Band Antenna Problem

We want to discuss specific antenna configurations and possibly infer some
mechanism to explain the reported antenna behavior, We will use the current gener-
ator representation, since it contains the same amount of information as any other
one,

Case a. The cavity dielectric is loss-free: P2 = 0, and no plasma sheath on

antenna surfaces, i.e. 63 = 60. We have then from (4. 14)and (4. 15) that

—_—
W
S
o~
N
S
iy

Ra=II* Ea X Ha * nds (4.21)
S
®
and
[00)
4w (i) (i)
= = § : - 4,22
Xa H'— \S WHa WEa dv ( )
1
Ty

We have used the subscript a in Eq. (4.21) and (4.22) to specifically indicate
those quantities which will depend on the antenna structure changes initiated in the
later discussions, and the antenna configuration will be identified by them as well.

We imagine that we tune the antenna by changing the cayity volume. The changes are

87




THE UNIVERSITY OF MICHIGAN

5825-1-F

made on the wall opposite the cavity slot, so as to keep the spatial character of the
slot field approximately the same. The antenna is tuned when Xa =0 in Eq. (4.22).
We then have a specific value of the antenna resistance which we denote by Ra. We
desire to make the antenna resistances equal to the characteristic impedance of the
feeder line as the optimum condition of the operation. The next question of interest
is to determine what causes Xa to equal zero. Does each integral in Eq. (4.22)
vanish separately, or do they cancel each other in some manner from which we may
infer some physical meaning ? The first integral is over the volume of the co-ax
feeder section. This is normally a small volume and the difference in the average
energies stored is expected to be small compared with the other energies to be dis-
cussed. For the time being we leave it out of the discussion. Since the cavity vol-
ume is considerable, a significant amount of average energy may be stored there:
electric energy will predominate when the cavity is below resonance while magnetic
energies predominates above resonance. In the present case of no plasma sheath
the common boundary between volumes V,_, and V, is only a geometrical boundary

3 4

and the two volumes should be discussed together. Although V 4 is an infinite vol-

ume, the integral will exist because the far-zone fields assume a plane wave char-
acter which implies that the instantaneous energy storage in the magnetic and
electric fields are equal, and hence the difference in the time average energy den-

Jsities is zero as well i, e.

(4) (4)
- 4,2
w w 0O, r > R, (4.23)
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where Ro is a sufficiently large number. Throughout volume V_ we will get a

significant contribution to the integral, this volume being close to the slot and also in

the immediate vicinity of the cylinder. To the extent of neglecting the energy storage

in the co-axial feeder section, one possibility of obtaining antenna resonance,

physically a very appealing one, is to consider that the cavity difference energy

storage is compensated by the difference energy storage outside the antenna, i.e.
S [w(z) (2)] dv =~ E S [w(l) (1)] dv, (4.24)
Ea

In this picture the slot couples the two predominant energy storage systems: the
cavity and the near-zone of the antenna. The excess energy surges back and forth
through the slot alternating directions each half cycle. This would be expected to
enhance the slot field amplitude, and thus to increase the radiated power of the an-
tenna. Unfortunately, we have no analytic means at our disposal to make this pic-
ture of the antenna resonance unique for a configuration as in Fig. 4-1. We may
also see from a slightly different viewpoint that the picture of resonance presented
is a physically reasonable one. Let us assume that the cavity slot is closed, and the
cavity is excited by a small probe on the opposite side. We select the cavity di-
mensions such that it is in the lowest mode of resonance at the exciting frequency w.
Now let us open a small slot. Energy from the cavity will leak through the slot into
the outside space. The nature of the cavity fields close to the slot will also change
radically, because of the changed boundary conditions. The cavity is no longer in

"resonance' as it has been de-tuned by the slot. Opening the slot creates in fact a
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new system which involves not only the cavity, but also the free space outside the
body of the antenna., We want to find again the lowest mode of resonance of this new
system. The simplest one and therefore possibly the lowest mode of resonance
appears when we change the cavity dimensions just sufficient to make the sum of the
difference energy storages in the cavity and the free space equal to zero. Only two
possibilities are open, either the difference energy storage in theé cavity and the free
space vanish simultaneously, or they cancel each other. The possibility of the first
situation cannot be excluded for all cases. However, the latter possibility appears
to be physically much more probable than the first one. In our discussion, for

most part, we will consider only the most probable case.

When the coupling slot is small compared to the wavelength in both dimension,
only a small fraction of the cavity energy will leak out, and consequently we will
claim that the '"Q" of the new system is just slightly lower than for the no slot
cavity. In such a situation in order to obtain a significant amount of radiation from
the antenna, the system mustbe brought to a resonance. That implies large field
amplitudes in the cavity, large surface currents over the conducting walls, and also
large electric fields in the slot, even when it is small compared to wavelengths.
With the proper transmission line coupling into the cavity and the system at
resonance, we should be able to radiate all the power from the feed line, no matter
how small the slot is. Such an antenna has a very narrow band-width and any changes

in configuration will de-tune it markedly. The fact that in our case the feeder excites
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the slot directly does not change the substance of the discussion so far presented, it
only makes the slot field more complex and thus less amenable to a theoretical
treatment,

From this discussion we see that it would be of considerable value to establish
for some antenna shape the magnitude of the coupling provided by the slot for inside
and outside reactive energies. The antenna configuration should be such that the
exact solution of the boundary value problem can be carried out.

At this poinf we should make a digression to observe that the impedance of a
narrow slot in a perfectly conducting ground plane in free-space is related by
Babinets' principle to the impedance of the thin electric antenna. (A thin wire cut in
half and excited at the center by a voltage generator, also known as the electric
dipole). The electric dipole is the most common and most studied antenna and its

impedance is readily available. If Ze is the electric dipole impedance and Zm
the thin slotimpedance then from Babinets' principle we have that

-k L

Z "¢ 3 (4.25)
e

A thin slot in a perfectly conducting ground plane is an example of the physical

realization of the magnetic dipole antenna. The magnetic dipole impedance may be

applicable directly to antennas where the radii of curvature are large with respect to

wavelength,
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Case b. We leave everything as in case a), except we add the plasma sheath.

The permittivity of plasma we take as

v
2 2
DA
€, =€ |1- -j (4.26)
2 2 ?
3 ° w +v w2+u
m m

where wp is the plasma frequency, and v m the momentum transfer collision
frequency. In case a) we had the resistance of the antenna given by (4-21) and the
cavity was tuned such that the total reactance was zero. Maintaining the same cur-

rent I at the input terminals we introduced the plasma sheath in V_. Both the

3‘
resistance and the reactance will change. We denote the new quantities by sub-

script b,

2
1 _(@) (@ _ v @ _G
= — E . .
Ry "I p X Hy "ondstew o 2z 2§ °f @
w +Vm
Vs

(4.27)

4
_ 4w (i) (i)
X = Zl S Wop T Wep | @ (4.28)
1=y,
1
The antenna resistance now consists of two terms. The first term comes, as

before, from the radiated power. The second term is new and it represents the

power absorbed in the plasma sheath. The reactance, as before, consists of four
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integrals. We would like very much to make a statement about how much Rb differs
from Ra’ and Xb from zero. Unfortunately for this we have to calculate the fields
first. In that case we would also find the tangential electric field at the reference
plane A, and hence the voltage V for the specified I. There would be no need for
this integral representation. The main value of the above expressions are in that
they provide a qualitative picture of the components of the resistance and reactance,
and furthermore give a frame of reference for making comparisons if reasonable
approximations can be made in the fields. The best possible thing would be to solve
some canonical problems whose results could then be extended to the antenna shape
of interest by physical argument. We have not done that as yet and thus we have

to rely only on our physical feelings for the problem in order to make some further
comments,

Conditions have not changed in the cavity, thus the fields would tend to main-
tain themselves there at the previous values. Let us assume therefore that the
difference average energy storage in cavity remains approximately the same. What
happens to the fields in the plasma sheath? Let us consider a case where

2

2 2 3
w +v m < wp s then the real part of 63 is negative and hence w( )

is negati and
Eb gatlve,

the difference energy storage in the plasma sheath is the sum of the average electric
energy and average magnetic energy; always a positive quantity. The implication of
this is that plasma beyond cut-off appears always inductive, no matter in what con-

figuration it is placed. It is rather difficult to make some statements on the

©
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difference average energy stored outside the plasma sheath. However, one over-all
effect of the plasma sheath is obvious: the antenna will be de-tuned; probably

Xb > 0, i.e. the antenna will appear to be inductive. This is the effect that the
plasma sheath will play on the imaginary part of the antenna impedance, The real
part of the antenna impedance consists of two parts, as pointed out before, the
radiation resistance and the plasma sheath resistance, The radiation resistance
with the plasma sheath beyond cut-off is definitely smaller than Ra because the
sheath will impede radiation. The magnitude of the plasma sheath resistance will
depend in large measure on the magnitude of the electric fields in the plasma sheath

v
and the ratio _wm . It may be comparable to the radiation resistance.

Case c. The antenna has the same conditions as in case a), except the
permittivity in the cavity is complex. We tune up the antenna, i.e. make Xc 80,

and we have a corresponding resistance Rc. In terms of the fields for this case

we have
_(4) . _ en
R =‘1_ E x H(4)' *nds +w 2 w(2) dv (4.29)
| \i
c II c c 62 Ec
Soo V2
and
s (o o
2w i i _
Xe T Zl S YHe T VEe | T O (4.30)
1:
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This antenna will have a wider band-width than in case a) because the losses are
greater and hence the antenna Q is lower. The antenna Q is defined in the same
manner as for circuits.

Case d) The antenna has the same conditions as in case c¢), except we add the
plasma sheath and do not re-tune the antenna. The elements of the antenna impedance]

we now express as

(4)  _(4) _ €"
R=L gE x H 'nds+wglw(2) dv +

d I d d 6'2 Ed
Soo V2
€W S "m wz 1_5(3)' E(B)*dv (4. 31)
0 W w2 ry 2 d d '
v, o

4
4w 1) _ ()
Xd_II*E | Sde wEd:l dv (4.32)

The same comments can be made about this case as in case b). Things are
changed only to the extent that we have energy dissipation in the cavity and this
entails the change of fields in every other region to some extent,

4.5 Discussion
If the slot is narrow and less than half a wavelength long, then the coupling be-

tween the cavity and the free space is not a maximum as would be expected when the
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slot is approximately one half-wavelength long. In order to obtain a significant
amount of radiation the antenna must be brought to a resonance and the shorter the
slot the more narrow the antenna bandwidth will be. Thus when the slot is short as
in Case a) we definitely have a narrow band antenna. In our further discussion we
will refer to this case as the '"narrow band'' antenna, and the Case b) as the

"'narrow band'" antenna with the plasma sheath., If we make the cavity dielectric
lossy, we have Case c). The lossy cavity dielectric decreases the antenna Q and
hence broadbands the antenna to some extent, causing a loss, of course, in the
radiation efficiency, The Case c) we will denote in our discussion as the ""broad
band'" antenna, And Case d) as the ""broad band" antenna with the plasma sheath.

We have represented the equivalent antenna impedance in terms of the fields in the
appropriate regions, Each region is characterized by a resistance and a reactance.
For the total effect they add in series. Now we want to discuss the power radiated in
each case and make some comparisons. It is significant to discuss the antenna per-
formance taking into account the internal impedance of the source. We select the

voltage generator as the source and we consider a circuit as shown in Figure 4-3.

Figure 4 ~ 3
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An ideal transmission line of length s, phase constant S and a characreristic
impedance Zo connects the antenna to the equivalent voltage generator which
represents the transmitter. The length of the transmission line is from the
reference plane A to the transmitter terminals., The transmitter is specified by
voltage Vg and internal impedance Zg' The current I through the impedance Z is

given by

I I:ZO cos(Bs) -j ZS sin (Bs):l , (4, 33)

S - S
Z(z +2)
o g s

where
Z+j Z0 tan (Bs)

=7 .3
Zs o Zo+j Z tan (Bs) (4.34)

The above formulas result from elementary transmission line theory. The radiated

power of the antenna is given by

p <> I R (4. 35)

The maximum power will be extracted from the generator and transferred by
the transmission line to the load when the load impedance as seen at the generator
terminals is equal to the conjugate of the generator impedance, a well known con-
dition, i.e.

Z =1 (4. 36)

Furthermore, when the generator is not matched to the line, the reflection

coefficient in the line does not provide a means of relating the power absorbed by the
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antenna with the antenna impedance changes. This is because the reflection
coefficient is simply the reflected wave amplitude divided by the incident wave
amplitude, and the incident wave amplitude changes as the load changes when the
generator is ‘not matched to the line, i.e., Zg # Zo. A good way to show that the
generator is matched to the line is to monitor with a directional coupler the incident
power. If it remains constant as the load is changed, then the generator is indeed
matched to the line, and the reflection coefficient changes permit one to obtain a
measure of changes in the power absorbed by the antenna. In the subsequent dis-
cussion we will assume that the generator is matched to the transmission line.

The main question before us is the experimental observation that the plasma
sheath impeded the radiation field considerably more in the case of the "narrow-
band' antenna than in the "broad-band" antenna case. Even in spite of the fact that
the narrow band antenna is a more efficient radiator when in resonance than the
"broad band'" antenna, the former gave a weaker far-zone field with the plasma
present. This observation is very difficult to explain. On the basis of the impedance
representation we can readily explain the antenna de-tuning when the plasma sheath
appears in the "narrow band" antenna case. The sheath destroys the resonance
condition and this introduces an appreciable reactance in the antenna impedance
which decreases the antenna current and hence the radiation power. Part of the
power taken by the antenna is dissipated in the plasma resistance and the remainder

is radiated.
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In case of the ""broad band" antenna similar comments apply, with the exception
that the cavity is now lossy, and in addition to the plasma resistance and radiation
resistance we add cavity resistance. Also we are told the resonance experimentally
occured under different conditions. If was necessary to introduce a stub tuner in the
transmission line between the reference plane A and the co-ax opening in order to
obtain a better match between the antenna and the co-ax, In fact this creates an
energy storage volume that no longer can be neglected in the over-all balance. One
must consider the fact that this may change the resonance pattern, and either just
reduce the reactive fields outside in the vicinity of the slot without unduly decreasing
the slot field itself, or it may cause outside reactive energy to shift more into the
magnetic field. The appearance of the plasma sheath under these conditions is ex~
pected to decrease the radiation field to a lesser degree than in the '"narrow band"
antenna case,

The experimental geometry of the problem makes it impossible to consider
an exact theoretical solution. We are left with considering a resonant structure
where a solution is possible and to study the outside reactive fields and their con-
trol by changes in the inside energy storages with a view of making the above argu-
ments more definite and unique than they are now. One of the main questions to be
answered is: to what extent the energy storage outside is coupled to the inside
energy storages, and to what extent it can be controlled by inside tuning? Can the

antenna be tuned by some ''inside resonances' which as a result does not require

o
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large reactive fields outside? In these areas there is very little theoretical informa-
tion available, It must be added that for a resonant antenna of the type we are dis-
cucging the "plane wave' approximation to predict the loss through the plasma sheath
does appear to be very poor indeed. This type of approximation is expected to hold
much better for apertures that are comparable with wavelength in both dimensions,
such as an open waveguide radiator. One must also be aware of the fact that the
plasma sheath not only impedes the transfer of power into the radiation field, but
also changes the amplitude of the slot field (usually decreasing it) and thus com-
pounding the influence of the plasma sheath. The real antenna problem is not equiv-
alent to some prescribed source on the antenna surface, because in reality the true
source is all the way back in the electronic package. The slot field can be regarded
as an "'equivalent' source for the field outside the antenna. However, it lacks the
requirements of a true source: the energy in the "equivalent source" is finite, while
in a true source it must be infinite.
REFERENCES
Landau, L. D. and Lifshitz, E. M., (1960), Electrodynamics of Continuous Media,

Pergamon Press, New York, p. 254.

100




P L}

THE UNIVERSITY OF MICHIGA;N
5825-1-F
V. FUTURE WORK

Some obvious extensions of the theoretical work accomplished so far include
consideration of a dielectric under the shell that is different from that on the outside
and the application of the method of Chapter II to the case of the narrow slot. On the
basis of this study one would then be in a position to choose a dielectric constant
ratio such that for a narrow frequency band of interest the cylinder antenna would
radiate through the slotted shell for all angular positions of the shell slot.

Another extension is to consider a finite thickness, partially tr‘a.msparent
plasma sheath with an infinite axial slot. The radiation then would depend not only on
the energy that leaks out through the slot, but also on the leakage through the
plasma sheath itself. This is a new boundary value problem and it is expected to be
somewhat more difficult than the one discussed in Chapters II and IIL

Another problem of some potential interest is to consider that the cylinder slot
is excited by a wedge waveguide which has a magnetic line source at the origin. This
in fact is a complete antenna problem. Inorder to find the slot fields of the cylinder
slot and the sheath slot we have to solve two simultaneous integral equations. The
solution of this problem would also show the extent to which the shell depresses the
cylinder slot field.

The further problem of relating these solutions to practical antenna configura-
tions is also of continuing importance. For this, physical intuition and understanding
of the canonical problem may not be sufficient, and some judicious experiments may

have to be undertaken.

O
fuerd

—



